Information for New Graduate Students
Fall 2012

Engineering and Chemistry for Sustainable Technology

Charles A. Eckert and Charles L. Liotta
School of Chemical & Bimolecular Engineering
School of Chemistry and Biochemistry
Specialty Separations Center
Georgia Tech, Atlanta
“Sustainable” is not just hugging a tree...
It’s getting everyone to hug a tree
Chemical Engineering and Chemistry 23-Year Collaboration

- Jointly Directed PhD Students
 - 50 Completed
 - 12 In Progress
- ~50 Joint Research Grants
- ~250 Publications and Presentations
- 2004 Presidential Green Chemistry Challenge Award
Current Group – ChEs and Chemists

• Students – All Co-Advised
 ✓ Undergraduates (8 at present)

• Staff
 ✓ Senior Scientists and Postdoctorals – Pamela Pollet, Beth Cope, Rani Jha, Elizabeth Biddinger, Steve Saunders, Andrea Song
 ✓ Coordinator, Deborah Babykin

• Other Collaborators
 ✓ Other GT Students and Faculty
 ✓ Students and Faculty at Other Universities
 ✓ Industry Partners
We Work Together

- Each Problem Has a Team
 - Multilevel, Multidisciplinary
- Each Person Is on Multiple Teams
- Advantages
 - Not All Problems Are Four Years
 - Facilitates Communications
 - Able to Do High Risk, High Return Research

Michelle Kassner, PhD ChBE, 2008, Chevron; Tori Blausucci, PhD ChBE, 2009, ExxonMobil
What Do We Do – and Why?

• Tunable Solvents
 ✓ Supercritical Fluids
 ✓ Nearcritical Fluids
 ✓ Gas Expanded Fluids

• Smart Solvents

• Advantages
 ✓ Benign
 ✓ Better Transport Properties
 ✓ Facilile Downstream Processing
Examples of Sustainable Technology

• Goals
 ✓ Environmentally Benign
 ✓ Cost-Effective

• Energy Applications
 ✓ CO₂ Recovery from Flue Gas
 ✓ Benign Harvesting of Sands and Oil Shale

• Green Pharmaceuticals
 ✓ Continuous Reactions for Pharma
 ✓ Benign Reactions in Nearcritical Water
 ✓ Coupling Reaction + Separations
 ❖ Homogeneous Catalyst Recycle

Heather Patrick, PhD ChBE, 2000, Emory University
Example: Smart Solvent Replacement for Supersolvent -- DMSO

- **Product Isolation from DMSO**
 - Add water, precipitate
 - Extract with another organic

- **Problems with DMSO Removal**
 - Isolation is product dependent.
 - Contaminated aqueous waste
 - No solvent recycling

- **Smart Solvent – Changes Properties on Command**
 - As good as DMSO
 - Decomposes into Volatile Fragments on Command
 - Easy to Remove
 - Can be Reformed and Recycled Later

\[\text{Dimethyl sulfoxide} \]

\[\text{H}_3\text{C} \underset{\text{S}}{\text{O}} \underset{\text{O}}{\text{CH}_3} \]
DMSO-like Solvent Has “Built-In” Recycle

Pipyrlene Sulfone

- Solvent Properties Comparable to DMSO
- T-Based Switch, Decomposition ~110°C
- Reaction is Reversible
- Equilibrium and Rates Are Good
Potential Process Cycle
Extraction or Reaction with Smart Solvent

Feed
Dissolution or Reaction Occurs in Polar, High-Boiling Solvent

Return Reformed Solvent

Reverse Reaction Reformulates Polar, High-Boiling Solvent

Bleed Gaseous Solvent Fragments From Separator

Solvent Decomposes to Low-Boiling Fragments

Withdraw Product
Example: Reversible Ionic Liquids

CO_2 Switch, Reverse by Heat

$N_2 \rightarrow CO_2$ or heat

$CO_2 \rightarrow N_2$ or heat

Non-polar Liquid

Ionic Liquid
Process: Claisen-Schmidt Reaction and Separation Using Reversible Ionic Liquid

1- Pentane, MeOH; MgSO₄

2-CO₂

RECYCLE

REFORMATION

TMBG

Ionic Liquid

Pentane
CO$_2$ Recovery from Power Plants Using Single-Component Silyl RevILs

- Dual Mechanism Solvent Absorption
 - Chemical Absorption
 - By Reaction of CO$_2$ with RevILs
 - Physical Absorption
 - By Dissolution of CO$_2$ in RevILs
- Increases Capacity
 - Better Separation with Less Energy Penalty
ASPEN Flow Sheet

- Industry Standard Design Software
- Permits Process Alternatives, Optimization
- Calculates Flows, Rates, Energy, Economics

Simulation Results

<table>
<thead>
<tr>
<th></th>
<th>$ per ton of CO₂ removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Costs</td>
<td>4.50</td>
</tr>
<tr>
<td>Regeneration Energy</td>
<td>3.61</td>
</tr>
<tr>
<td>(Steam)</td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>4.06</td>
</tr>
<tr>
<td>Cooling Water</td>
<td>0.87</td>
</tr>
<tr>
<td>Materials</td>
<td>2.16</td>
</tr>
<tr>
<td>Total</td>
<td>15.20</td>
</tr>
</tbody>
</table>
Nearcritical Water: A Benign Solvent

- Research Partner: Lilly
- Water at 250-350º C
 - Like Acetone
 - Dissolves both Salts and Organics
- Natural Acid (Base)
 - Catalyzes Reactions
 - Eliminates Waste
- Facile Processing
 - Homogeneous Reactions
 - Separation by Cooling

\[H_2O \xrightleftharpoons[K_w]{\text{275ºC}} H^+ + OH^- \]

![Graph showing log Kw vs temperature](image-url)
Gas-Expanded Liquids (GXLs)

Tunable Organic-CO$_2$ Mixtures

- Good Organic Solvents Miscible with CO$_2$
- Solubility is Pressure Tunable
- Solvent properties are pressure tunable
- Separation by Depressurization

Add CO$_2$
Homogeneous Catalyst Recycle with GXLs

- Homogeneous Catalysts
 - Selectivity, Rates
 - Asymmetric Synthesis
 - Difficult to Reuse
- Paradigm
 - Homogeneous Reaction
 - Change Phase Behavior for Separation
- “Designer” Solvents
- “Designer” Catalysts

Megan Donaldson, PhD ChBE 2008, Dow; Nicole Hess, BS ChBE 2008, Berkeley
CO$_2$ Induced Immiscibility:
Organic Aqueous Tunable Solvents (OATS)

- Homogeneous Reaction
 - ✓ Organic/Aqueous Solution
 - ✓ Ambient Pressure
- CO$_2$ Induces Phase Split
- GXL Poor Solvent for
 - ✓ Ionic Catalysts
 - ✓ Enzymes
- Decant, Depressurize
 - ✓ Catalyst Recycle
 - ✓ Product Purification
OATS for Biocatalytic Synthesis and Purification of Hydrophobic Drugs

- Enantioselective Biocatalysis
 - Water Insoluble Substrates
 - Facile Product Isolation and Catalyst Recycle

- OATS Mixture
 - Benign Alternative for Organics
 - Higher Enantioselectivity
 - Higher Efficiency
 - Higher Stability of Enzymes
 - Facile Purification of Pharmaceuticals

James Brown, PhD, ChBE, 2000, ExxonMobil; Jason Hallett, PhD, ChBE, 2002, Imperial College, London
Typical Projects: Recent Grants

- NSF, Application of Reversible Ionic Liquids
 - Coupling Reactions and Separations
- AMPAC, Many Topics
 - Novel Routes to Pharma
 - Specialty Chemicals
 - Flow Reactors
 - Heterogeneous Catalysis
- NSF, Corning
 - Flow Reactors for Pharma
- Lilly, Applications to Pharmaceuticals
 - DMSO Substitute
 - Reactions in NCW
- DOE and ConocoPhillips, CO$_2$ Capture
 - Single-Component Reversible Ionic Liquids
 - Silylation
 - Molecular Design
- PRF, Smart Solvents for Nanoparticles
- Dow, Polymers
 - PVC Reactions
- Dow, Smart Solvents
 - Gas-Expanded Liquids for Pharma
 - Catalyst Recovery and Recycle
 - Recyclable DMSO Replacement
 - Phase Transfer Catalysis
Finishing the Degree

• Interviewing -- A full-time job
• Connections and Recommendations
• Average time for PhD = 4.3 years
• Typical Pattern
 ✓ ~1/3 Academic Employment
 ✓ ~2/3 Industrial Employment

Greg Marus, PhD ChBE 2011, Albemarle
Recent PhDs from Research Group
In Chemistry and Chemical Engineering

• 2007
 ✓ Charu Panday, SW Research
 ✓ Susanta Samanta, Milliken
 ✓ Liz Hill, Rohm & Haas
 ✓ Laura Draucker, EPA
 ✓ Ejae John, U. Trinidad
 ✓ Jack Ford, U. Kansas

• 2008
 ✓ John Gohres – Evonik
 ✓ Megan Donaldson – Dow
 ✓ Reagan Charney – Law Firm
 ✓ Michelle Kassner – Chevron

• 2009
 ✓ Tori Blasucci – ExxonMobil
 ✓ Kristin Kitagawa – BASF

• 2010
 ✓ Hillary Huttenhower – Pratt and Whitney
 ✓ Ryan Hart -- Exponent
 ✓ Ali Fadhel – GE

• 2011
 ✓ Greg Marus -- Albemarle
Decision Process – Pick a Group

• Research Goals
 ✓ Education
 ✓ Satisfaction
 ✓ Personal Growth

• You Should Seek
 ✓ Enthusiasm
 ✓ Motivation
 ✓ Creativity

• We Seek
 ✓ Molecular Viewpoint
 ❖ Heavy on Chemistry
 ✓ Teamwork
 ❖ Multidisciplinary Approach
 ✓ PhD degree
 ✓ Experiment + Modeling
 ✓ Enthusiasm, Motivation, and Creativity
If You Might Be Interested in Joining Us

• Talk to the Professors
 ✔ Chuck Eckert, 2206 ES&T, 4-7070
 ❖ Coordinator, Deborah Babykin, 2301 ES&T, 4-3690
 ✔ Charlie Liotta, 2201B MS&E, 5-3111
 ❖ Coordinator, Michele Yeager, 2201C MS&E, 4-8222

• Talk to the Students
 ✔ All in the NW Wing, Level 2, ES&T
 ✔ Go in any office and ask for a tour

• Come to our Group Meetings